

Quality-based drainage of urban rainwater Potential analysis for the catchment of Hildesheim, GER

Stephan Köster Maike Beier Nils-Kristof Kabisch

German current design background

- Since 200 years cities have been built up including a comprehensive sewer network
 - \rightarrow > 97% drainage connection rate
 - \rightarrow 580,000 km pipes
 - \rightarrow 60% combined sewer systems
- Current focus: adapting the existing infrastructure to
 - → new technical regulations concerning flow seperation and water protection
 - \rightarrow heavy rainfall events / climate change
 - \rightarrow Emerging pollutants

²⁰²¹ 28th October | Prof. Dr.-Ing. Stephan Köster | Quality-based drainage of urban rainwater

Our vision

A modified drainage system in which all polluted wastewater and rainwater is treated at wastewater treatment plants while non-polluted rainwater is available as water resource

CUD²⁰²¹ 28th October | Prof. Dr.-Ing. Stephan Köster | Quality-based drainage of urban rainwater

Stormwater Quality (Run off)

Highways

Local variation

Temporal variations

Microplastic ?

Rainwater Quality (Run off)

- Local variation
- Temporal variations

SE BS ISU~

90 0.9 0.8-

60 0.6

50 0.5

0.7

Potential analysis Hildesheim - Method I (Pollution)

SA Irina Skripnyuk, 2021

7

Potential analysis Hildesheim - Method II (Flows)

- Common sealing degrees from literature
- 10-year rainfall series with an average of 660.5 mm/a
- Average runoff coefficient of 0.7 was applied
- Considered Scenarios:

Scenario	Industry/Commercial	Streets	Mixed	Residential
S0	current state (sub-catchments with combined sewer systems are connected to WWTP)			
S1	connected to WWTP	connected to WWTP	decoupled from WWTP	decoupled from WWTP
S2	connected to WWTP	connected to WWTP	temporarily (first 30 min.) connected to WWTP	decoupled from WWTP
2021 28th October Prof. DrIng. Stephan Köster Quality-based drainage of urban rainwater				8

Potential analysis Hildesheim – Results I

Scenario 0: Current State

- strong interweaving of the various sub-streams
- 475,000 m³/a of Pollution Class I are not available in the catchment and burdens the WWTP unnecessarily
- 1,120,000 m³/a rainwater of Pollution Class II and III from areas with a separate sewer system must be treated by additional treatment facilities

Potential analysis Hildesheim – Results II

28th October | Prof. Dr.-Ing. Stephan Köster | Quality-based drainage of urban rainwater

Potential analysis Hildesheim – Results II

2021 28th October | Prof. Dr.-Ing. Stephan Köster | Quality-based drainage of urban rainwater

The idea of a quality-based rainwater management shows very promising results:

- High utilisation of the existing infrastructure
 - Major part of polluted rainwater could be treated by existing WWTP with high efficiency of large and centralised facilities
 - The need for additional rainwater treatment facilitites can be reduced by 68% up to zero

\rightarrow cost-effective

Increasing water supply in the neighbourhood up to 72 %
→ eco-friendly

Thank you for your listening!

Prof. Dr.-Ing. Stephan Köster Dr.-Ing. Maike Beier Nils-Kristof Kabisch, MSc.

Leibniz University Hannover Institute of Sanitary Engineering and Waste Management Welfengarten 1, 30167 Hanover, Germany

Mail: Tel: beier@isah.uni-hannover.de +49 511 - 762 2898

The authors would like to thank the German Federal Ministry of Education and Research for funding the TransMiT project within the RES:Z call: Ressource-optimised city of the future

